Контрольная по Транспорт: Анализ переходных процессов при разряженном конденсаторе Рефераты контрольные курсовые работы дипломные готовые и на заказ.
ГлавнаяКарта сайтаКонтакты
О КОМПАНИИ    УСЛУГИ    ГОТОВЫЕ РАБОТЫ    ЗАКАЗАТЬ    КОНТАКТЫ

WWW.DIPSHOP.RU Центр образовательных услуг:
контрольные, курсовые, дипломные работы, рефераты готовые и на заказ!






СКАЧАТЬ ЭТУ РАБОТУ

Контрольная №2614
по Транспорт
на тему: Анализ переходных процессов при разряженном конденсаторе



Кол-во страниц: 12
Кол-во чертежей * формат: * НЕТ

СПИСОК ЧЕРТЕЖЕЙ:


КЛЮЧЕВЫЕ СЛОВА:переходные процессы, разряженный конденсатор


СОДЕРЖАНИЕ:
Содержание
Введение………………………………………………………………..…3
Причины возникновения переходных
процессов. Законы коммутации………………………………………….5
Математические основы анализа переходных процессов……………...7
Алгоритм расчета переходного процесса классическим
методом………………………………………………………………….…9
Переходные процессы в цепи с последовательно включенными
резисторами и конденсатором……………………………………………11
Литература…………………………………………………………………12


ВВЕДЕНИЕ:
Введение
Под переходным (динамическим, нестационарным) процессом или режимом в электрических цепях понимается процесс перехода цепи из одного установившегося состояния (режима) в другое. При установившихся, или стационарных, режимах в цепях постоянного тока напряжения и токи неизменны во времени, а в цепях переменного тока они представляют собой периодические функции времени. Установившиеся режимы при заданных и неизменных параметрах цепи полностью определяются только источником энергии. Следовательно, источники постоянного напряжения (или тока) создают в цепи постоянный ток, а источники переменного напряжения (или тока) - переменный ток той же частоты, что и частота источника энергии.
Переходные процессы возникают при любых изменениях режима электрической цепи: при подключении и отключении цепи, при изменении нагрузки, при возникновении аварийных режимов (короткое замыкание, обрыв провода и т.д.). Изменения в электрической цепи можно представить в виде тех или иных переключений, называемых в общем случае коммутацией. Физически переходные процессы представляют собой процессы перехода от энергетического состояния, соответствующего до коммутационному режиму, к энергетическому состоянию, соответствующему после коммутационному режиму.
Переходные процессы обычно быстро протекающие: длительность их составляет десятые, сотые, а иногда и миллиардные доли секунды. Сравнительно редко длительность переходных процессов достигает секунд и десятков секунд. Тем не менее изучение переходных процессов весьма важно, так как позволяет установить, как деформируется по форме и амплитуде сигнал, выявить превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, увеличения амплитуд токов, которые могут в десятки раз превышать амплитуду тока установившегося периодического процесса, а также

ВЫРЕЗКА ИЗ РАБОТЫ:
Причины возникновения переходных процессов.
Законы коммутации
В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, подключенными к цепи. При этом часть энергия безвозвратно преобразуется в другие виды энергий (например, в тепловую на активном сопротивлении).
После окончания переходного процесса устанавливается новый установившийся режим, который определяется только внешними источниками энергии. При отключении внешних источников энергии переходный процесс может возникать за счет энергии электромагнитного поля, накопленной до начала переходного режима в индуктивных и емкостных элементах цепи.
Изменения энергии магнитного и электрического полей не могут происходить мгновенно, и, следовательно, не могут мгновенно протекать процессы в момент коммутации. В самом деле, скачкообразное (мгновенное) изменение энергии в индуктивном и емкостном элементе приводит к необходимости иметь бесконечно большие мощности p = dW/dt, что практически невозможно, ибо в реальных электрических цепях бесконечно большой мощности не существует.
Таким образом, переходные процессы не могут протекать мгновенно, так как невозможно в принципе мгновенно изменять энергию, накопленную в электромагнитном поле цепи. Теоретически переходные процессы заканчиваются за время t’. Практически же переходные процессы являются быстропротекающими, и их длительность обычно составляет доли секунды.


ЗАКЛЮЧЕНИЕ:
Переходные процессы в цепи с последовательно включенными резисторами и конденсатором
Разряд конденсатора на резистор
Рассмотрим переходный процесс при коротком замыкании в цепи с конденсатором и резистором, если предварительно конденсатор был заряжен до напряжения
uC(0+) = U0 = Е.
Установившийся ток через конденсатор и установившееся напряжение на конденсаторе равны нулю. Для построения характеристического уравнения запишем по второму закону Кирхгофа уравнение для вновь образованного контура
R i + uC = 0.
Характеристическое уравнение имеет вид:
RCp + 1 = 0.
Общее решение для свободной составляющей напряжения:
uCсв = A ept = A e-t/Д,
где: А = U0 - постоянная интегрирования;
p = - 1 / (RC) - корень характеристического уравнения;
Д = RC - постоянная времени цепи.
С учетом нулевого значения установившегося напряжения получим напряжение на конденсаторе:
uC = U0 e-t/Д.
Кривые изменения напряжения на конденсаторе и тока в цепи во времени имеют вид экспонент.
С энергетической точки зрения переходный процесс характеризуется переходом энергии электрического поля конденсатора в тепловую энергию в резисторе. Следует отметить; что сопротивление резистора влияет не на количество выделенной теплоты, а на начальное значение тока и длительность разряда.


СПИСОК ЛИТЕРАТУРЫ:
Литература
1. Частоедов Л.А. Электротехника, М: «Высшая школа» 1976.
2. Раскатов А.И. Задачник по электротехнике и электрооборудованию
М: «Высшая школа» 1964.

СКАЧАТЬ ЭТУ РАБОТУ

© Центр образовательных услуг DIPSHOP.RU, 1996-2014
© ИП Литвиненко М.В.